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Abstract-An infinitely long solid slab of temperature dependent thermal conductivity is heated 
optimally by the ambient temperature. The physical objective of the problem is to increase the 
temperature level in the slab to a higher level at the end of a fixed period of time, while keeping the 
necessary ambient temperature level as low as possible. Reformulated as an optimal control problem, the 
problem is solved numerically by utilizing the finite element method. An approximate perturbation 

method is also given for linearizing the necessary conditions for optimalrty. 

NOMENCLATURE 

Bi, Biot number; 

J, performance index defined by 
equation (6); 

J’, functional defined by equation (17); 

k, thermal conductivity of the slab; 

N, shape function; 

7; temperature in the slab; 

t, time coordinate; 

u, controlling ambient temperature; 

.y, spatial coordinate along the 
plate thickness. 

Greek symbols 

a, weighting parameter; 

A, increment; 

6, variational symbol ; 
6 slope of thermal conductivity- 

temperature curve; 
perturbation parameter; 

1, Lagrange multiplier function. 

Subscripts 

4 desired state; 

!; final time; 

I, initial time; 

JT dummy index ; 
t, partial differentiation with 

respect to t ; 

.y, partial differentiation with 
respect to x ; 

0, 0th order perturbation; 

1, 1st order perturbation. 

1. INTRODUCTION 

THERE are many industrial processes in which it is 
required to control the temperature distribution in a 
given material. Such a situation arises in the glass 
industry, for example, where glass nearing the final 
stages of certain manufacturing processes must be 

brought to a temperature as near uniform as possible 
to prevent unwanted inhomogeneities in the final 

article [ 11. 
In iron and steel industry, on the other hand, in 

heating ingots before rolling it is important to heat 
the metal rapidly and sufficiently uniformly. A rapid 
heating of the metal increases the productive ca- 
pacity of furnaces, while uniformly heated ingots 
insure less defective products. 

In this investigation, optimal heating of an 

infinitely long solid slab with temperature dependent 
thermal conductivity is analyzed numerically. The 
posed problem mathematically constitutes a so- 
called optimal boundary control problem [2]. After 
obtaining the necessary conditions for optimality by 
calculus of variations, finite element methods are 
utilized for numerical solutions. 

2. STATEMENT OF THE PROBLEM 

An infinitely long undeformable solid slab is 

required to be heated from a given initial tempera- 
ture level to a higher desired level by boundary 
convection in a fixed period of time. The thermal 

conductivity of the slab happens to obey a linear 
thermal conductivity-temperature relationship. The 
one-dimensional differential equation which charac- 
terizes the heat conduction in the slab may be 
written in a nondimensional form as 

aT a _=_ 
at ax [ 1 

k(T)g , O<xdl, O<t<tf, (1) 

and 

k(T) = 1 +ET. (2) 

Here T(x, t) represents the temperature distribution 
in the slab whose thickness is equal to 1. The slope of 
the dimensionless conductivity-temperature curve is 
taken as E. The optimal (controlled) heating of the 
slab is assumed to take place from the initial time 
t = 0 to the final time t = tf. 
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The initial and boundary conditions of the 
problem may be prescribed as 

t=O: T=T II (3) 

_y = 0; (‘T = 0, 
i.Y 

.y = I ; k’:T = Bi(~r- T). 
?.Y 

(5) 

where 7; is the constant initial temperature level in 
the slab; Bi is the usual Biot number indicating the 
ratio of the surface conductance to the conduction of 
solid; u(t) is the controlling ambient temperature 
whose functional dependence on time is sought. The 

boundary conditions (4) and (5) represent the 
insulation condition at one face of the slab and the 
convection condition at the other, respectively. In 
equation (5), Bi should be considered as an equiva- 
lent Biot number, the heat being transmitted to the 
slab by a combined effect of conduction, convection 

and radiation. 
The physical objective of the control problem is to 

increase the temperature level of the slab from T= 7; 

to as near as T = Td at the end of a given final time 
tS, where Td is the desired temperature level. 
However, the problem would not be well-posed 
without some form of constraint on the control 
function, i.e., the ambient temperature [I]. This 
constraint may be taken as forcing the ambient 
temperature as near as zero, while achieving a final- 

time temperature as near as Td. Thus, the stated 
objectives of the problem may be cast into a 
mathematical form as indicated by a performance 
index J : 

a ‘1 
(T-K)2i,zg ds+i u’dt. 

J 
(6) 

, -0 

where a IS a given weighting parameter. The first 
term in the above quadratic functional is the 
spacewise integral of the square of the deviation of 
the final-time temperature from the desired tempera- 
ture Ievel over the thickness of the slab. The second 
term is, on the other hand. the timewise integration 

of the square of the ambient temperature over the 
control time tJ with a weighting coefficient. The 
physical objectives of the problem are attained with 
a relative degree of achievement according to the 
value of a when the performance index J is 
minimized._Hence, the function u(t) which minimizes 
J is the desired, optimal ambient temperature 
solution. 

The weighting parameter I plays an important 
role in the problem. It combines actually two 
physical objectives in a linear combination by 
weighting. At this point it can be argued that taking 
a smaller value for a would result in final-time 
temperatures nearer to the desired level. Neverthe- 
less, if the fuel cost (related to the ambient 
temperature) is relatively important one might not 
choose a very small value for c(. 

3. METHOD OF SOLUTION 

3. I. Necessary conditiofls,fi?r optimality 

The posed optimal control problem is to find the 
ambient temperature u(t) which minimizes the 
performance index J while the heat conduction 
equation, and the initial and boundary conditions 
are satisfied. However, instead of treating the 
problem as the minimization of a functional subject 
to equality constraints. we may obtain the necessary 
conditions for optimality, which are only a set of 
partial differential equations, by calculus of vari- 
ations [2]. The solution of these differential 

equations then represents the desired optimal am- 
bient temperature as well as the temperature distri- 
bution in the slab. Thus the nonlinear necessary 
conditions for optimality may be stated as follows 
[‘I: - - 

?T 
~ = (1 +BT)$+F 
?t i ) 

2 

g , 

?i 
~ = - (1 +ET)g, 
?t 

together with the initial time condition 

t = 0; T= qi, 

the final time condition 

t=t/; A=T-T,, 

and the boundary conditions 

2T 
x=0; -=o, 

?s 

r=O; !z”-=O 
dx ’ 

.Y= 1; (l+r:T)~=Bi(u-T) 
Y 

1 
x= I; (I+cT)z+Bil=O, 

.y= 1; au+Bii=O, 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

where 1 = 1(x, t) is the Lagrangian multiplier of 
calculus of variations. 

The optimality conditions (7) through (15) involve 
3 solution functions, namely u(t), T(x, t) and n(x, t). 
The partial differential equations have a two-point 
boundary value character in time as well as in the 
space variable. In other words, no complete time- 
conditions are available at either the initial or the 
final time. This in turn makes the solution of this 
type of problem even numerically quite difficult. 

3.2. Finite element method ,jtir the optimal&y 
conditions 

It is impossible to find a closed form solution to 
the nonlinear set of partial differential equations 
which describes the optimality conditions. Instead, a 
numerical procedure is to be adopted by using the 
well-known finite element method [3,4]. 
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First, equations (7) through (15) may be put into a 
stationary variational formulation by considering the 
following [5] : 

I’ 6J’ = 
ss 

l [(T,,+ETTx,+&T,2-7;)6n4 
0 0 

+ (A,, + ET&, + l,)hT] dxdt 

11 
- J [( Tx+~TTx+BiT+Bi2~ 

0 u 

+(A,+ETL,+B~L)GT dt 1 
_L=1 

s 1 

- (n-T+ T,MTI,=,,dx, (16) 
0 

where the subscripts x and t denote the partial 
differentiations with respect to the corresponding 
independent variables, and the symbol 6 designates 
the first variation. Using integration by parts and 
reordering some of the terms it can be shown that 
the optimal functions make the following functional 

J’ stationary: 

J’ = [(l +(-:T)7;1,+17;]dxdt 

Bi2~+2BiT~ dt 1 A=* 
+; j’ [-T2+2~T],=,,dz 

0 (17) 

The optimal control problem is thus reformulated 
as a stationary variational principle rather than an 
extremum variational principle. The finite element 
method may now be applied to this control problem 
[3]. In the formulation, not only the temperature 
distribution 7; but also the Lagrangian function are 
interpolated continuously over the finite elements. 

The solution domain (Odud 1. O,<t<t,f) is first 
divided into triangular elements in space and time as 
in Fig. I. Linear interpolation functions are sufficient 
for compatibility, thus over each element 

T(.Y, t) = 1 Nj(s, 07;, (18) 
I= 1 

L(.Y, t) = 1 Nj(s, t)l,, (19) 
j=l 

where N, are the usual shape functions defined 
piecewise, element by element, and are linear herein. 
The subscript j here denotes the j’th node of an 
element. 

Applying the finite element discretizations to the 
functional J’, equation (17), and making it stationary 
with respect to the unknown nodal values would 
result in nonlinear algebraic matrix equations. As the 
algebraic equations constitute a nonlinear system, an 
iterative scheme of solution is usually required. In 
this analysis, the NewtonRaphson method is adop- 
ted for the numerical solution of equations [6]. The 
solution of the matrix equations gives the nodal 

values of the temperature distribution function and 

the Lagrangian multiplier function, and thereby 
those of the ambient temperature, as well. 

Given E is small, it is also possible to use a 

perturbation scheme to linearize the nonlinear 
optimahty conditions first, and then use the finite 

element procedure. Thus, the resulting linear al- 
gebraic equations can easily be solved by direct 
methods, such as a Gaussian elimination technique. 
The perturbation equations and the corresponding 
functionals are given in the Appendix. 

FIG. I. Solution domain divided into triangular elements in 
space and time. 

4. NUMERICAL RESULTS AND CONCLUSIONS 

Numerical results are presented for the optimal 
heating of an infinitely long slab of temperature 
dependent conductivity. The objective of the control 
problem is to have a final-time temperature in the 
slab as near a desired level with the least amount of 
fuel cost, represented here by the ambient tempera- 
ture. In reality, there is a weighting factor CI which 
sets the relative degree of importance of the fuel cost 
versus the final-time temperature level in the slab. 

In Fig. 2, the numerical solutions of the perfor- 

mance index J are plotted against the “nonlinearity” 
parameter E for a set of problem parameters. The 
solid line gives the nonlinear (Newton-Raphson) 
solution, while the perturbation solution is indicated 
by a broken line. For small absolute values of E (i.e., 
IcI<O.2) the numerical perturbation method gives 
satisfactory results for this slightly nonlinear pro- 

blem. For higher 1~1, on the other hand, the reason 
for increasing discrepancy is probably that the 
calculation by the perturbation method proceeds by 
the accumulation of the linearized solutions. 

In the nonlinear method of solution, in order to 

solve the nonlinear simultaneous equations by the 
Newton-Raphson method, large sets of symmetric 
linear equations are solved repeatedly. However, as 
the numerical solution with E = 0 is taken as the 
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FIG. 2. Performance index f as calculated by two methods for Bi = 1; c( = 0.01; tf = 0.4; K = 0 and 
q = 0.2 
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FIG. 3. Ambient temperature u(t) for I: = 0.1; Bi = 0.5; c( = O.OOi : t, = 2; T, = 0 and q =: 0.2 
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FIG. rl. Final-time temperature T(r, t,) for F, = 0.1 : Bi = 0.5; cx = 0.001; tl = 2; T, = 0 and Td = 0.2. 

initial guess, the method converges rapidly: after time temperature distribution in the slab is given as a 
approximately 6 iterations, the largest residual is function of s in Fig. 4. In the above set of 
10-7. parameters, the weighting parameter c1 is taken 

In Fig. 3, the optimal ambient temperature uft) is rather small. This indicates a relative un~m~rtance 
shown as a function of time when the problem of the fuel cost (the ambient temperature), and in 
parameters are set as 8 = 0.1; Bi = 0.5; cI = 0.001; turn results in the final-time temperature very close 
tf = 2; Y& = 0 and ‘& = 0.2. The corresponding final- to the desired level. 
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FIG. 5. Ambient temperature u(t) with various Bi for E = 0.2; c( = 0.125; cl. = I ; 7; = I and Td = 1.5. 
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FIG. 6. Ambient temperature u(t) with various I: for Bi = 1.5; a = 0.125; t, = 1 ; 7; = 1 and & = 1.5. 

In order to see the influence of the Biot number Bi 
on the optimal ambient temperature, various Bi 

values have been taken while keeping c = 0.2; 
a = 0.125; tJ = 1 ; 7; = 1 and Td = 1.5. The resulting 
numerical solutions are shown in Fig. 5. 

Finally, in Fig. 6 the numerical solution of the 
ambient temperature is shown as a function of time 
for various values of E when Bi = 1.5; a = 0.125; 
tl = 1 ; T = 1 and Td = 1.5. From the figure it is seen 
that for small t the ambient temperature requirement 
is smaller for a negative E than the one for a positive 
I:. It might be argued that this is because a negative 
thermal conductivity-temperature slope suppresses 
heat condition in the slab while a positive one 
augments it. 

In the numerical calculations, the influence of the 
discretization in the space domain (O<.u < 1) seems 
to be modest. Nevertheless, much more finite time 
discretizations are necessary for numerical stability. 

In the analysis, the temperature dependence of 
thermal conductivity is directly incorporated into the 
stationary variational formulations. If this relation- 
ship should be other than the simple linear form 
used, this would result in additional algebraic 
operations because of the higher terms. However, the 
basic mathematical operations would remain un- 
changed [7]. 

As a summary, the optimal heating of an infinitely 
long slab is analyzed by the finite element method. In 
the analysis, the time coordinate is treated as if it 
were another space coordinate. In other words, the 
problem is considered as a two-point boundary 
value problem with a closed domain of solution 
(O<.Y ,< I. 0~ t d ‘0. With this view, the application 
of the finite element method becomes very useful as 
standard programs should easily be adapted for the 
suggested numerical procedure [S]. At this point it 
might be pointed out that a solution could also be 
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achieved by using finite differences (possibly in a 
variational form). However, a two-or three- dimen- 
sional problem with a complex geometry would be 
more amenable to finite element methods. 
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APPENDIX 

For most materials and applications, the thermal 
conductivity-temperature slope E is small. Therefore, in 
order to linearize the optimality conditions of the problem, 
a regular first order asymptotic expansion for ‘I;A and II in 
the perturbation parameter E may be taken [8] 

T= T,+eT, +O(c’), (A.1) 

L = &+sL, iYO(r?), (A.2) 

u = uo + Eli, +0(&l), (A.3) 

where the subscripts refer to the zeroth and first order 
solutions. Introducing equations (A.1) through (A.3) into 
equations (7) through (15), and equating the coefficients of 
the same order terms in E, the following linear simultaneous 
equation systems can be obtained: 

for the 0th order term: 

aT, c?‘T, 

at FI.x2 ’ 

do, a*A, 

at ax2 ’ 

(A.4) 

(A.5) 

t=O; To=T I. (A.6) 

t=tl; I,= To-&, 64.7) 

aT, 
x=0; -=o 

aY ’ 
(A.8) 

ah 
x=0; -zoo, 

a* 
(A.9) 

cl 
I= 1; r=Si(uO-To), 

Y 
(A.10) 

x = I ; 2 + Bii,, = 0. (A.1 1) 

X= 1; au,+Bil,=O. (A.12) 

for the 1st order term: 

34 -= 
at 

-$T$= -$+TO$, (A.14) 

(A.13) 

t=O; T,=O, (A.15) 

t = I/; A, = T,, (A.16) 

37-1 
x=0; -=o 

a.x ’ 
(A.17) 

(A.18) 

aT, aT, 
.Y= I; dy+TOay=Bi(ul-T,), 

34 
.Y= 1; ,+Toz+BiI,=O, 

(A.19) 

(A.20) 

x = 1; au, +Bil, = 0. (A.21) 

As can be noticed, the 1st order equations involve the 
prior solution functions, i.e., the 0th order functions, as the 
nonhomogeneous terms. 

The 0th and 1st order perturbation equations may be put 
into stationary variational forms as in the nonlinear case. 
These variational formulations lead to the following 
functionals: 

+ZBiT,I, dt 
I x= 1 

+; j”’ [-T,+2T,T,],=,,d.x, 
0 

and 

(A.22) 

J, = 

Bi’~+ZBiT,& 
a 

+2T,&\T,+ZT,T,\I, dt 
1 1 = t 

1 .’ 
-_ 

I I 
T: d?c. 

2 0 ,=,, 
(AX) 

Applying the finite element discretizations (18) and (19) 
directly to the functionals J, and J, will give.systems of 
linear algebraic equations which are solvable, for example, 
by a Gaussian elimination technique. Thus, a direct 
solution of algebraic equations is involved instead of an 
iterational solution with its inherent problem of 
convergence. 
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ANALYSE PAR ELEMENTS FINIS DU CHAUFFAGE OPTIMAL DUN LINGOT A 
CONDUCTIVITE THERMIQUE VARIABLE AVEC LA TEMPERATURE 

R&sum& Un lingot infiniment long et a conductivite thermique variable avec la temperature est chatrITe 
de facon optimale par I’ambiance. L’objectif du problcme est d’elever au maaimum le niveau de 

temperature dans le lingot d la tin d’une periode de temps fixee. cn maintenant la temperature ambiante 
aussi basse que possible. Reformule en probleme de commnnde optimale. le probleme est resolu 
numeriquement en utilisant la methode de perturbation pour linearrser les conditions necessarres pour 

I’optimrsatmn. 
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BERECHNUNG DER OPTIMALEN BEHEIZUNG EINER PLATTE MIT 
TEMPERATURABHANGIGER WARMELEITFAHIGKEIT UNTER ANWENDUNG VON 

FINITEN ELEMENTEN 

Zusammenfassung Eine unendlich lange. feste Platte mit temperaturabhangiger Warmeleitfahigkeit wird 
bei Umgebungstemperatur optimal beheirt. Das physikalische Ziel des Problems ist, nach Ende einer 
festen Zeitperiode ein hoheres Temperaturniveau in der Platte zu erreichen, wahrend die Umgebungs- 
temperatur so niedrig als moglich gehalten wird. Nach Umformulierung in ein Regelungsproblem wird 
dieses unter Anwendung der Finiten-Elementen-Methode numerisch gel&t. AuDerdem wird zum 
Linearisieren der notwendigen Bedingungen fur das Optimum als Naherung ein Storungsverfahren 

angegeben. 

AHAJIMS OITTMMAJIbHOI-0 HAI-PEBA HJIMTbI C TEIIJIOHPOBO~HOCTbtO. 
3ABMCRLIIEm OT TEMHEPATYPM. METOAOM KOHEqHbIX 3JIEMEHTOB 

AHHOTMWI - npOH3BOflHTCa 0nTAMa:lbHblii Ha&Tea 6eCKOHeYHOA IIJIMTbt. TennOnpOBOflHOCTb KOTOpOti 

3aBHckfT 0T TeMnepaTypbt, npki 3anatiHok aHeutHeR TeMnepaType. MccTenoBaHTie npennpeHKT0 c uenbto 

nony~ewir 6onee BbtCoKoro ~POBHR TeMnepaTypbt a KoHue onpeitenetmoro nepaona BpeMeriri, a To 
BPeMa KaK HeO6XOLlHMaK TeMnepaTypa BHetLtHefi C,YZflbl COXpaHaeTCa KPK MO~HO 6O.lee HHJKOfi. 

kpe+OpMynHpOBaHHaa KaK 3ana’Ta OnTHMa.“bHOrO KOHTpOJIa. OHa pet”aeTCK qHCneHH0 Ha OCHOBe 

MeTOna KOHe9HblX WteMeHTOB. ,&tK JHHeapTT3auRH HeO6XOnHMblX yCJtOB#ti OnTHMa.TbHOCTA TaKme 

“pHBOZtHTcZ4 MeTOn MaJIbtX aOSMytI,eHMi?. 


